
Access Attributes

In Java you can declare properties such as variables and
methods to be

• public
• protected
• private

You also have the option of saying nothing about access.

To see the difference in these, you need to be aware
that classes in Java can be collected into groups called
packages.

public properties can be seen and modified anywhere in
the program.

protected properties can be seen and modified anywhere
within their package. They can also be inherited by
subclasses. So if you are writing a system for a bank and
you have a protected variable balance within a class
called UserAccount, even if you don't let anyone see your
UserAccount code, someone can get access to the
balance variable by making a subclass of UserAccount.

private properties are visible only within their classes.
They can't be inherited by subclasses.

The default access level (when you say nothing about
access) is to make properties visible within their
package, but not to subclasses outside their package.
This is the level of protection you get if you don't say
the property is public, protected or private.

For what we’ll be doing this year (all of the code for
a project is contained in one package) the public,
protected and default access types are the same:
protected objects can be seen or modified
anywhere in the program, private objects can only
be seen or modified within their own class.

We will generally use the attributes private and
public whenever we want to be explicit about
access.

static is an attribute of java objects that causes a lot
of confusion. When an object is declared to be
static that means it belongs to a class rather than to
any particular object of that class.

For example consider this class:
public class Person {

private String name;
public int populationCount = 0;
public Person(String who) {

name = who;
populationCount += 1;

}
}

Every Person has their own name, of course. The
way this class is written every Person also has their
own populationCount. That isn’t what we want.

If we make populationCount static:
public class Person {

private String name;
public static int popCount = 0;
public Person(String who) {

name = who;
popCount += 1;

}
}

then there is just one popCount for the class, and it
keeps track of how many Persons have been
constructed.

Methods can also be declared static. A static
method of a class can be called without constructing
an object of the class. Static methods are called
with className.methodName() rather than
objectName.methodName()

Static methods can’t refer to any non-static
properties of their class and can’t call any other non-
static methods without constructing objects for
them.

Consider this variation on the Person class:
public class Person {

static int popCount = 0;
private String name;
int myCount;

public Person(String who) {
name = who;
popCount += 1;
myCount = popCount;

}

public void history() {
System.out.printf("When %s was created they were Person number %d\n",

name, myCount);
}

The only difference is that Persons now have a
variable myCount that remembers which element of
the population they are.

Here is a new main() method for class Person:
public static void main(String[] args) {

Person x = new Person("bob");
Person y = new Person("mary");
x.history();
y.history();

}

} // closes the person class

We don’t need to construct an object of class Person
for main() to make sense, so main() can be declared
to be static.

If we added a line to main(v):
System.out.println(myCount);

then main() could no longer be static because we
would have to know which Person’s myCount this
refers to.

Suppose we changed the program so that myCount
was always 23:

class Person {
int myCount;
…
public Person() {

myCount = 23;
…

}
…
public static void main(String [] args) {

…
System.out.println(myCount);

}
}

This still wouldn’t be valid because Java isn’t smart
enough to figure out that myCount is always 23. If
main() refers to myCount than myCount must be
static.

A program’s main() method must be declared to be
static. If you forget to declare it as static Eclipse
won’t recognize it as a true main method.

There is one more attribute that we need. If a
variable is declared to be final then it can only be
assigned to once. This is used to make constants in
Java. For example, the following constructs an array
of 10 ints:

public static final int SIZE = 10;
int [] data = new int[SIZE];

